
Texture Splats for 3D Scalar and Vector Field Visualization
Roger A. Crawfis (crawfis@llnl.gov)

Nelson Max (max2@llnl.gov)

Lawrence Livermore National Laboratory
P.O. Box 808 / L-301
Livermore, CA 94551

Abstract

Volume Visualization is becoming an important tool
for understanding large 3D data sets. A popular technique
for volume rendering is known as splatting. With new
hardware architectures offering substantial improvements
in the performance of rendering texture mapped objects, we
present textured splats. An ideal reconstruction
function for 3D signals is developed which can be used as
a texture map for a splat. Extensions to the basic splatting
technique are then developed to additionally represent
vector fields.

Introduction

Westover has proposed two methods of using splatting
to produce volume rendering. In the first method
[Westover89], the color and opacity filter kernels for each
voxel are composited one by one in back to front order (in
regard to their center points). In the second [Westover90],
the colors and opacities for all the voxels in a layer are
summed into an accumulation buffer, and then composited
as a whole into the image. This second method prevents
the opacity interactions of the voxels within one layer, and
eliminates any possible small glitches from the change in
sorting order within a layer during rotation. However, it
may introduce larger glitches when the choice of the layer
direction (most perpendicular to the viewing direction)
changes.

We have implemented the earlier method, taking
advantage of the texture mapping and compositing features
in Silicon Graphics rendering engines. As in
[Westover90], we put the color and opacity values for a
high resolution master splat into a texture map, and then
use the texturing hardware to interpolate sampled values
from these maps. We also use the RGBA compositing
hardware to modify the frame buffer with each splat. The
Explorer product from Silicon Graphics, Inc. uses the
compositing scheme, but not the texture mapping in their
volume rendering. We have added extensions to Explorer
for texture mapped splats for both scalar and vector volume
rendering.

Ideal Reconstruction Functions

Laur and Hanrahan [Laur90] also used the fast
compositing hardware of the SGI, but approximated each
splat by a collection of polygons. Mach bands are visible
at the polygon edges, and individual splats are visible,
because they do not overlap smoothly. Each splat is
typically created from fifteen to twenty-one triangles, or a
triangle mesh. For architectures that have hardware support
for texture mapping, we can replace these many polygons
with a single texture mapped square. Max [Max91]
developed an optimal piecewise quadratic reconstruction
function for images. We used this kind of function rather
than a gaussian, since its overlap extent is well known and
the function goes to zero in a minimum extent. This
function was designed for the reconstruction of 2D signals
(images), not 3D signals. By focusing on the
reconstruction of three-dimensional signals, we have
developed a reconstruction function for 3D splats that is
accurate from all viewing directions. This function is a
piecewise cubic, offering additional degrees of freedom in
the optimization. Hence it is as accurate as [Max91] for
orthogonal views perpendicular to the axes.

We have mathematically optimized the splats to give a
smooth overlap, from any viewing direction, with the
desired property of minimal extent. If h(x,y,z) is the 3D
reconstruction filter kernel for a voxel at (0,0,0), its 2D
footprint f(x,y) is given by:

f (x,y) = h(x,y,z)dz
−∞

∞

∫ . (1)

As in [Westover89], we restrict ourselves to
rotationally symmetric filter kernels, such that

h(x,y,z) = g(x2 + y2 + z2), for a function g(r) of a

single radius variable r. Our goal is to chose g(r) such that
1) g(r) ∈ C1, eliminating mach bands, and 2) the splats
overlap into a smooth density, hiding the structure of the
individual splats.

To understand this second criteria, consider a cube filled
with n x n x n voxels, all emitting an intensity of one
and with no opacity. The orthogonal volume rendering

Roger A. Crawfis
Reprinted from "Proceedings Visualization '93", San Jose, (October 1993), Nielson and Bergeron (eds.) IEEE CS Press, pp. 261-266.

Reconstruction Function

r

g
(

r
)

0
0.1
0 .2
0 .3
0 .4
0 .5
0 .6

0
.0

0

0
.2

0

0
.4

0

0
.6

0

0
.8

0

1
.0

0

1
.2

0

1
.4

0

1
.6

0

 Figure 1. Ideal reconstruction function

Figure 2. Error of volume reconstruction (x250)

projection of this cube should be as constant as possible,
within the region bounded by the projections of two
parallel faces, where the ray path lengths are equal. Since
this should be true for all n, and all viewing angles, it
presents a difficult optimization problem. Instead, we have
chosen to minimize the relative variance (r.m.s. deviation
from the mean, divided by the mean) of the reconstruction
c(x,y,z) of this constant function

c(x,y,z) = h(x − i,y − j ,z− k)
−∞

∞
∑

−∞

∞
∑

−∞

∞
∑ (2)

with voxel centers at the integer lattice vertices (i,j,k). Our
filter kernel has a finite support, so each of these infinite
sums is in fact finite.

Except for edge effects where all terms in this finite
sum are not present, the total density for two comparable
pixels in our cube projection comes from two integrals of
(2) along parallel segments of the same length, and should
not vary much if the 3D reconstruction does not.

The 3D optimization is then a 3D version of the 2D
optimization of [Max91]. We assume g(r) is zero for r > t,
and is represented by two cubic polynomials, p(r) for
0 ≤ r ≤ s, and q(r) for s≤ r ≤ t (see Figure 1.). The
condition that h(x,y,z) be C1 at the origin means that the
linear term of p(r) is zero, hence, p(r) takes the form:

p(r) = a+ br2 + cr3.
The condition that q(r) meets the zero constant function in
a C1 fashion are r = t means that q(r) takes the form

q(r) = d(t − r)2 + e(t− r)3.

The condition that p(r) and q(r) meet in a C1 fashion at r =
s gives two more linear constraints on the variables a,b,c,d
and e . We solved for c and e in terms of the other

variables, a, b and d. Finally, since we were only interested
in relative variation, we set a = 1. This gives four
independent parameters, s, t, b and d. We minimized the
relative variance of the sum in equation (2) using an
unconstrained optimization algorithm [Gay83]. This
algorithm estimates the gradients and Hessian matrices
needed for minimization from function evaluations. There
is no absolute minimum, since the relative variance can be
arbitrarily small if t is arbitrarily large. Therefore, we
searched for a local minimum with a reasonably small t,
and found one at t = 1.556228, and s = 0.889392. The
relative variance was 0.00119, and the maximum relative
deviations from the mean were -0.00233 at
x = y = z = 0.26, and 0.00534, at x = y = 0.5 a n d
z = 0 .

By dividing the constants a, b, c, d, and e by the mean
of c(x,y,z), scaling the reconstructed function to values
near 1, we get:

g(r) =
0.557526−1.157743r 2 + 0.671033r3 0 ≤ r ≤ s

0.067599(t − r)2 + 0.282474(t − r)3 s≤ r ≤ t

0 s≥ t









Figure 1. shows a graph of this function.

The integral (1) can be computed in closed form, since

f (x,y) = g(x2 + y2 + z2

−∞

∞

∫)dz= g(r 2 + z2

−∞

∞

∫)dz

where r = x2 + y2 . (Polynomials of low degree in

r 2 + z2 appear in tables of indefinite integrals.) This
closed form solution was used to compute the footprint
function f(x,y). Figure 2. shows 2 x 2 periods of a 2D

Figure 3: a) Portion of Intensity Table b) Portion of Opacity Table

projection along the z axis of one layer of glowing,
completely transparent volume splats. (In this case the
relative deviation is independent of the number of layers.)
The maximum projected value was 1.00249 at (.5,.5), and
the minimum was 0.99845 at (.25,.25). The intensities in
figure 2. were scaled to exaggerate the deviation
approximately 250 times. From this we can see that the
total variation is only about one part in 256, or one bit
with most 8-bit color accuracy.

We use this function to generate a texture that is used
as the splat. The texture is generated with an extent of 1.6
and the splats are built up in back to front order. Figure 4b
was generated using this technique.

Combined Vector and Scalar Textures

We can integrate vector fields into the scalar
reconstruction function, by adding a slight disturbance in
the function, such as tiny vector particles, or scratch
marks. For the master splat, these vector indications are
created in the x-axis direction. Figure 3. illustrates a series
of twelve such splats. These twelve are part of a larger
table that will be explained later in this paper. For the
splatting of vector splats, two additional calculations must
be carried out. First, the vector field direction for each splat
is determined and transformed to viewing coordinates. The

projection of this vector (vx,vy) is then used to determine
a rotation matrix for the polygon splat.

The splat is rendered by selecting a splat from the splat
table in Figure 3a as an intensity map, and for scalar
fields, the same splat in Figure 3b for an opacity map.
There are several texture mapping possibilities in SGI's
GL graphics library [GL91]. We chose a two-component
texture consisting of an intensity and an opacity
component for our texture splats. Different texture
mapping operations are used for representing only a vector
field versus a scalar and vector field.

The MODULATE operator [GL91] multiplies the
polygon's color by the splat's intensity and opacity. This
operator is used for representing a single vector field. The
splats in Figure 3a are used for both the intensity and
opacity. The resulting splat's color will thus be:

R = Rin * Itex

G = Gin * Itex

B = Bin * Itex

A = Ain * Atex.
The polygon's color () (the resulting splat's color) can be
used to convey the magnitude of the vector field.
Alternatively, we can map a separate scalar field or use an
axes coordinate as an additional spatial cue.

The BLEND operator [GL91] will produce a dissolve
between the polygon's color (Rin,Gin,Bin) and a specified
constant color using the splats intensity (Itex) as the
fraction to take from each. The polygon's opacity (Ain) is
modified as with the MODULATE operator. The resulting
splat's color will thus be:

R = Rin * (1 - Itex) + Rconst * Itex

G = Gin * (1 - Itex) + Gconst * Itex

B = Bin * (1 - Itex) + Bconst * Itex

A = Ain * Atex

Using the texture maps in Figure 3, this function will
give us (Rconst,Gconst,Bconst) colored vectors, with the
appropriately colored splats, both of which are attenuated
by the polygon's opacity Ain. The vector color can be
changed for each splat, allowing the vectors to be color
coded by magnitude, or offering an additional three-
dimensional cue by tying the color mapping to the splat's
world coordinate position.

When representing a single vector field, we can stretch the
polygon in the vector direction, producing a "streaky" or
paint brush affect.

These operations define the texture mapping used to
create a data dependent splat with the proper transparency
and colors. This splat is what is then composited into the
final image.

So far, we have only indicated the xy-projection of the
vector direction. No indication of the component of the
vector directed towards the eye is given. This can be
represented by a foreshortening of the vector based on the
viewing direction component in relation to the overall
vector length. If we are only representing a vector field or
if we separate the vector and scalar splats, an easy method
of achieving this is to simply shorten the polygon in the
vector direction. This is simply the x-axis direction of the
base splat, since we use the transformation pipeline to
orient the splat in the direction of the vector. A second
alternative is to change the texture mapping coordinates in
the x-axis direction (increasing the frequency content of the
resulting image). Unfortunately there is no way to
automatically have the resulting repetitive texture
windowed using current hardware. A third method which
will also work for combined scalar and vector fields, is to
create a table of textures indicating different amounts of
foreshortening. This is represented across the columns in
Figure 3. The z component vz of the vector direction is
used to index into a column in Figure 3.

The series of splats represented in Figure 3, also are
used to provide animation of the flow field. Going up the
rows of Figure 3, we have the vector component of the
splats moving across the scalar reconstruction. It should be
noted that the vector component is windowed, but given a
slightly larger extent than the scalar splat. We assign each

splat a random index into the rows. For animated flows, a
changing phase shift is added to the indexing.

System Design

Inventor / Explorer

With the help of SGI, we have extended the
VolumeToGeom and Render modules of the Explorer
system from SGI. These modules implement the octree
volume rendering scheme of Laur and Hanrahan [Laur91].
The main enhancement is the inclusion of Textured Splats,
Vector Splats, and combined Vector and Scalar Splats. The
Render module in Explorer uses Inventor, an object-
oriented graphics library, from which we developed C++
subclasses for the various splats. By adding a timer
Sensor, available in Inventor, we can change the phase of
the splats. We have created a set of sixteen windowed
vector texture maps, where each map has the vectors
propagated forward (and cyclically) in the map before being
windowed (rows of Figure 3). We attach a Slider (another
useful Inventor feature) to the Timer, that allows the user
to control the speed of the animation of the vector field
(see the accompanying Video Proceedings). The use of
C++ allows us to easily extend the capabilities of the
volume rendering when using splats.

Performance

The performance of the algorithm on scalar data sets is
dependent on the overall size of the splats. For many small
scalar texture splats the algorithm is actually faster than
the gaussian splats used by Explorer. This comes about
from the trade-off of rendering one texture mapped square
versus rendering a Gourand shaded triangle strip consisting
of many triangles. As the amount of screen space the
splats occupy increases, the performance reverses, and the
polygonal gaussian splats are faster than the textured
splats. The relative difference in speed is never very
substantial for the test cases we have run. The quality of
the image is however much better when using the textured
splats with the optimal reconstruction kernel described
above.

The vector splats incur about a fifty percent
performance penalty in the matrix multiply required with
each vector to transform it to screen space. The inverse of
the viewing matrix is needed for this, but the four by four
matrix inverse is computed only once for the entire octree.
There is also a minor amount of additional work in
calculating the rotation matrix and the vector
foreshortening.

Results

Figures 4a and 4b are volume renderings of a sample
Explorer data set. Figure 4a was generated using the
polygonal mesh with 3 radial samples and seven azimuth

samples to approximate the gaussian. Figure 4b was
generated using our ideal reconstruction function and
texture mapped squares. Both images used a splat size of
1.6. Artifacts of the polygonal mesh and the rapid cutoff of
the gaussian are clearly evident in Figure 4a.

Figure 5 illustrates the vector splatting on a dummy
test tornado data set. The magnitude of the vector field is
used to control the opacity and a noisy color map of
browns is used to add some variations. Figure 6 shows a
global climate data set. Here, the jet stream winds are
represented by the vector splats. The magnitude of the
winds is mapped to both opacity and color, and a stretched
vector splat is used to provide a wispy appearance in the
wind field direction. Figure 7 uses the GL blend operation
to add white vectors flowing through the volume rendering
of the magnitude of an airflow through an aerogel (ultr
light weight insulator) substance. Polygon data
representing the aerogel fibers are embedded into the
volume rendering. Figure 8. represents the scalar field
percent cloudiness and the vector field of winds of the
climate data over North America. The winds are color
coded to give an indication of the placement within the
altitude and are also restricted to where there is a high
concentration of clouds.

Future Work

We need to experiment with different textures for better
representation, particularly textures with an animated
component. The texture used here was our first try, more
effective textures certainly exist. Much work could also be
done to improve the performance of the texture-mapping,
paying particular attention to the amount of available
texture map memory. We have many different application
areas that we will be testing these techniques out on in the
next few months. These include: fluid flow, electro-
magnetics, underground water contamination, and
structural mechanics. Since we can easily extend our C++
classes, multivariate splats, tensor splats, and possible
combinations can be added. Our current plans include
working on splats to represent relationships between two
or three scalar variables and possibly a vector field, as well
as representing two vector fields, such as the electrical (E)
and the magnetic (H) fields in electro-magnetic
simulations.

Acknowledgments

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract number W-7405-ENG-
48, with specific support from an internal (LDRD) grant.
The authors would like to thank SGI for their cooperation,
in particular, Roy Hashimoto and Bob Brown. The Global
Climate data is courtesy of the Program for Climate Model
Diagnosis and Intercomparison and the European Centre
for Medium-range Weather Forecasts. The aerogel data is
courtesy of Tony Ladd and Elaine Chandler, LLNL

References

[Gay83] Gay, David, Algorithm 611, Collected
algorithms of the ACM, also in ACM
Transactions on Mathematical Software Vol.
9, No 4 (1983) pp. 503 - 524.

[GL91] Graphics Programming Library
Guide. Silicon Graphics, Inc. 1991.

[Laur91] Laur, David, and Pat Hanrahan, Hierarchical
Splatting A Progressive Refinement
Algori thm for Volume Rendering,
Computer Graphics (SIGGRAPH 91),
Vol. 25 No. 4, pp. 285 - 288.

[Max91] Max, Nelson, An Optimal Filter for Image
Reconstruction, in Graphics Gem II,
James Arvo (ed), Academic Press, New York,
pp. 101 - 104.

[Westover89] Westover L., (1989) Interactive Volume
Rendering , Proceedings of the Chapel
H i l l W o r k s h o p o n V o l u m e
Visualization , Department of Computer
Science, University of North Carolina,
Chapel Hill, NC, pp. 9 - 16.

[Westover90] Westover L., (1990) Footprint Evaluation for
Volume Rendering, Computer Graphics
(SIGGRAPH 90), Vol. 24 No. 4, pp. 367 -
376.

Figure 4. a) Gaussian Splats b) Texture Splats with an
optimal reconstruction texture. Figure 5. Test Tornado

Figure 6. Wind Velocities (jetstreams). Color mapped to
wind magnitude.

Figure 7. Airflow through an aerogel substrate. Vector
direction in white, magnitude is volume rendered.

Figure 8. Percent cloudiness and wind velocities. The wind velocities are color coded by altitude.

